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Integral transforms for conformal field theories with a 
boundary 
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V6T 122, Canada 

Received 11 July 1995 

Abstract A new method is developed for solving the conformally invariant integrals that 
axise in conformal field theories with a boundary. The presence of a boundary m&es previous 
techniques for theories without a boundary less suitable. The method makes essential use 
of M invenible integral transform, related to the radon transform. involving integration over 
planes parallel to the boundary. For successful application of this method several non-trivial 
hypergeometric function relations are also derived. 

1. Introduction 

At a critical point most statistical mechanical systems are not only scale invariant but are 
also conformally invariant [I, 21. This principle has profound implications for calculations 
of @e correlation functions, critical exponents and universal amplitudes of such systems 131. 
In two dimensions, where the conformal group is infinite dimensional, multipoint correlation 
functions are more strongly constrained then in dimension d > 2, where the conformal group 
is finite. However, consideration of d > 2 is also important, particularly in the statistical 
mechanical context when d = 3. In the case of general d conformal invariance still provides 
quite powerful constraints. For example, in the infinite geometry Rd the forms of the two 
and three point functions of scalar fields in a conformal field theory are determined exactly 
(up to normalization) by the restrictions of conformal invariance. 

Cardy has shown how to generalize the principle of conformal invariance to the case of 
the semi-infinite geomeky W:, so that surface critical phenomena can be probed using these 
techniques [1,4].~ In R$ it is only appropriate to have conformal invariance under conformal 
transformation which leave the boundary fixed. In this case the restrictions on the form of 
correlations functions are not as strong. In particular the form of the two-point function 
of a scalar field in R$ is reshicted by conformal invariance only up to some function of a 
single conformally invariant variable [I]. This function.must be then be determined for the 
particular theory under consideration. 

In this paper we outline a powerful method, which makes essential use of canformal 
invariance, for calculating the two-point functions of scalar, vector and tensor fields of 
conformal field theories in the semi-infinite space E%$. In particular we give a prescription 
for @eating the conformally invariant integrals that arise in a diagrammatic expansion of the 
theory. Techniques for handling such integrals have been developed for the infinite space 
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Rd, and have proven to be very useful [5,6]. However these techniques do not extend to 
nS$ and so this alternative technique is developed. 

2. Conformal invariance 

A transformation of coordinates x, + x$x)  is a conformal transformation if it leaves the 
line element unchanged up to a local scale factor Q ( x ) .  That is 

dxidxi = C2 (~)-~dx,dx,. (2.1) 
For the discussion of two-point functions of fields in a conformal field theory we need to 

consider the effect of conformal transformations on these fields. If a field O(x) transforms 
under the conformal group as 

O ( x )  -+ O s ( x g )  = Q ( x ) W ( x )  (2.2) 
for some q,  then O(x) is said to be a quasi-primary scalar field with scale dimension q. A 
quasi-primary vector field V,(x) with scale dimension rl is one which transforms as 

(2.3) 
where R,.(x) = Q(x)%$/8x,. The transformation for quasi-primary tensor fields follows 
analogously. We will restrict our attention to quasi-primary fields in this paper. 

In the semi-infinite space R: we define coordinates x, = ( y ,  2) where y measures 
the perpendicular distance from the boundary, and the zi are coordinates in the (d - 1)- 
dimensional hyperplanes parallel to the boundary. The two-point functions of scalar 
operators are restricted by translational and rotational invariance in planes parallel to the 
boundary to be 

V ( x )  3 v;(xg)  = s2(x)~R,u(x)v&) 

(01 ()C)OZ(X')) = G(y ,  Y', Iz - I'll (2.4) 
and scale invariance further restricts the form of G to depend on two independent scale 
invariant variables s2/y2 and S ~ / Y ' ~ ,  where sz = (x  - 9)'. This situation should be 
contrasted with the case of infinite space where it is not possible to construct a variable from 
two points which is invariant under all of scale, translational and rotational transformations. 

Under 
conformal transformations which leave the boundary fixed 

For two points in nS$ conformal invariance provides further restrictions. 

so that only one independent conformally invariant variable can be constructed from two 
points 

where Z2 = (I - I ' )~  + ( y  + Y ' ) ~  is the square of the distance along the path between x 
and the image point of x'. 

As a consequence, the correlation function of two quasi-primary scalar fields may be 
written as 

T The e + 0 and 6 -t 00 limiting behaviour of this function is fixed by the operator product and boundary 
operator expansions [7]. 
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As an example we consider free scalar field theory, where the field @ ( x )  satisfies 
Dirichlet or Neumann boundary conditions at y = ~ O .  Then by the method of images 
the Green function is simply 

where 

In the above expression the upper (lower) sign corresponds to Neumann (Dirichlet) boundary 
conditions and the factor Sd = 27r id / r ( fd )  is the area of a unit hypersphere in d 
dimensions. 

In [7], henceforth referred to as I ,  the form of the two-point functions of scalar, vector 
and tensor fields was worked out in detail for the O ( N )  sigma model in both the E and 
large-N expansions. These calculation were significantly simplified by the use of a new 
technique to solve the conformally invariant integrals on R$ that naturally arise. In the next 
section this technique is discussed in detail. 

3. Parallel transform method 

We consider integrals of the form 

- ( x  - r ) 2  (x' - r ) Z  
(=- $ 1  = r = (z, T) 

4yz 4y'z 

(3.1) 

where conformal invariance restricts the form of the integral to be a function of ( only. 
This follows because under conformal transformations which leave the boundary fixed. 
the~integration measure transforms as ddx + S2(x)-dddx and the factor 1/(2zfd -+ 
S ~ ( X ) ~ / ( ~ Z ) ~  so the local scaling factor cancels. 

Given functions f j  and fi we may solve integrals of this type indirectly by first 
integrating f ( 5 )  over hyperplanes parallel to the boundaryt 

which defines the function f ( p )  to be 

The crucial point is that this defines an integral transform f + f* which is invertible. Thus 
f(() can be retrieved from f^(p) via 

(3.4) 

The integral in the above formula is actually singular for values of A that we consider here, 
but the inversion formula may still be defined by analytic continuation in A from Re@)  < 0. 

t This is related lo the Radon transformation o f f  ( x )  [8], which is defined as the integral of f (x) over all possible 
hyperplanes in E?'. Here we consider integrals over the subset of hyperplanes in R$ which are parallel to the 
boundaty. 
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To verify that the transformation (3.3) is compatible with the inversion formula (3.4) it is 
sufficient to make use of the following relation involving generalized functions: 

as CL -+ -A. /du (p - u)t-lu;-l= ~ ( p ,  A) pt+*-l-  r(-A)r(A)qp) (3.5) 

For the case d = 3 when A = 1 we use 

(3.6) 

to reduce the inversion formula (3.4) to the simple form 
1 f ( t )  = -;PO). (3.7) 

Now that this parallel transform has been defined it is possible to derive an integral 
relation for the transformed functions by integrating f(p) in (3.1) with respect to x so that 

In order to solve integrals of this type we first change variables z = em, y = e 
y' = e% so that equation (3.8) becomes 

and 

m 
f (sinh'(01 - 02)) = J d0 3 (sinh'(0 - el)) (sinh'(0 - 0')) . (3.9) 

4 

Now by taking the Fourier transform 

3 ( k )  = I w d 0  e'"f(sinh'0) (3.10) 
-U2 

then by the convolution theorem the transformed integral relation (3.8) becomes 

&k) = f=,(k)?",(k). (3.1 1) 

Thus we may solve integrals of the general type given in (3.1) by this double integral 
tansform method provided that it is possible to make the transforms 56)  + j ( p )  -+ 
f i ( k )  for both thefunctions f i  and fz and that the subsequent inverse transforms of the 
resulting function f ( k )  can be made. Of course the form of the functions fi and fz are 
crucial in order for this procedure to be successfully undertaken. For the typical cases which 
arise in the diagrammatic expansion of a conformal field theory this method has proven to 
be very successful, although the intermediate steps often involve non-trivial manipulations 
of hypergeometric functions. In the next section several examples which are likely to occur 
in calculations in conformal field theory are given to illustrate the method, and provide a 
table of transforms for future reference. 

4. nlustration of the method 

For application to the calculation of two-point functions in a conformal field theory we 
may use this method to solve the integrals over products of propagators that occur in a 
diagrammatic expansion of the theory. Therefore, by considering, for example, the Green 
function of the free scalar field given in (2.8) we wish to solve integrals of the following 
type: 
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with 

52 = (a: - r ) 2  + ( y  - 2 )  2 

P = (2' - T)2  + (y' - e)Z 

? = (a: - r ) 2  + ( y  + z)2 

P = (2' - TI2 + (y' + 212 
- 

For conformal invariance, following (2.5), we must also require 

a + B + a'+ d + B = d .  (4.2) 

This integral may be readily cast into the general form (3.1), for which we should then take 

(4.3) 

Later in this section we will consider the more general integrals that arise in the discussion 
of the large-N expansion of the O ( N )  sigma model, where the propagator for the auxiliary 
field A has a more complicated functional form. 

To solve the integrall4.1) using the method of section 3 we first take the sequence of 
transforms f .+ f^ + f^ as defined in (3.3) and (3.10) for functions of the form f i (e )  
above. For simplicity we take 

(4.4) 

The first transform f + f follows from standard references: 

The function F(a,  b; c;  z) is a hypergeomekic function whose definition is given in (A.1) 
For the subsequent transform f^ + f we consider the cases B = 0, a = 0, 'a = ?i 
separately 

(4.7) 
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There is one other case, a particular combination of two functions of the type (4.4), which 
is of interest, namely 

The last two cases, frlr and fiv, are important because the more general case where E 
differs from 01 by any integer follows’in a straightforward manner from them. However, 
the derivation of those two results directly is non-trivial. The simplest way to verify them 
is by working backwards and taking the inverse transforms. A general procedure for taking 
the inverse transforms is discussed next. 

For application to conformal field theory where we have integrals of the form (3.1) 
then the transformed relatiQn (3.11) suggests that we need to take the inverse transform of 
products of the functions f,(k) in I to IV. In all of these cases the dependence of f(k) 
on k is through combinations of Gamma functions. Consque?tly, by considering the poles 
of the Gamma function, the inverse Fourier transform f --f f of (3.11) can be performed 
by contour integration. We first consider the following combination of Gamma functions 
which is appropriate for verifying the tfansforms of fill and fiv above: 

(4.10) 

The poles of r (a  - aik) occur at iik = a +n with residue ( - l y / n !  (for n a non-negative 
integer). Therefore, the inverse transform is obtained as a sum of the residues of &. 
resulting in a series that has hypergeometric form 

- 

2rl ‘ S  &(sinh 2 0) = - dk e-ipe &h(k) 

cosh’ B 
b - -; 2a +2b - 1; - 1 

2 
- 4 ~ 2 4  - 

r (b -a ) r (b+U)  (4~0sh’O)” 
(4.ii) 

By choosing appropriae valuesfor a, b, and noting that cosh20 = 1 + p then the Fourier 
transformed functions fm and f l v  follow directly from this result. To obtain the inverse 
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parallel transform we use 

with p = 2a + n, in the last line of (4.1 I )  so that 

1 
2 

+ A - a  + b  - -: 2a +2b - 1; - (4.13) 

Now, with the appropriate choice of a, b, we can use this result  to verify the parallel 
transforms j$~ and j v  in equations (4.8) and (4.9). 

In order to solve the integrals of-the type (3.1) we must find the inverse Fourier 
transform of products of the functions f^j(k)  in I to N. These may can be simply obtained 
as hypergeometric series by contour integration in a similar way to above above calculation. 
The procedure for finding the inverse parallel transform differs, though, because it is not 
always possible to make the simplifying manipulation of the hypergeometric function that 
is made in (4.11). This is because the hypergeometric series is often of higher order. 
However, a procedure for taking the inverse transform f^ + f which bypasses this step 
is derived in the appendix. This procedure makes essential use of a special property of 
the hypergeometric series which arises on taking the inverse Fourier transform, that is due 
the symmetry &k) = &4). After taking the inverse Fourier transform of products of the 
functions in I to IV, we obtain a hypergeometric series with one of the two following forms: 

i(sinh'8) =e-""Iy+lF,,(2a,bl, ... b , : c , ,  . . . ~ ~ ; e - ~ " ~  ) (4.14) 

L(sinh'8) =e- zoiei y+~Fy(2a,b~,...by;cl,...c,;e-zie') (4.15) 

where the notation y+l Fy refers to a generalized hypergeometric series which is defined 
in (A.2). The crucial point is that the parameters bj and cj in these functions are always 
related by ci = 1 + 2a - bi. 

We now present the inverse transforms of six of the possible combinations of the 
functions in I to IV, which have been obtained using this method. These represent solutions 
to particular integrals of the type (3.1). First we consider products of the functions fi and 
fiI. In these cases the inverse Fourier transform results in hypergeometric series of the 
form (4.15) and the inverse parallel transform can be found via the methods outlined in the 
appendix. Thus, using (A.22). we obtain 

(4.16) 



6922 D M McAvity 

(4.17) 

(4.18) 

In order to bring these results to this form it is necessary to use several identities of the 
hypergeometric function which can befound in the standard references [9]. 

If we take the limit a +or' + d in these integrals, which corresponds to 8 + 0 in the 
original integral (4.1) then the following relation: 

can be used to show that 

(4.19) 

(4.20) 

in the limit a + U' + d. This is the expected result when the range of the integral (4.1), 
with B = Z' = ,3 = 0, is extended to the infinite space Rd. In a similar way it is possible 
to show that if a +or' = d then Z1.n + ZIi.1 = 0, where 41.1 is defined by taking a e or' in 

We now evaluate three more conformally invariant integrals involving combinations 
of the functions fr11 and fN. In these cases the inverse Fourier transform results in a 
hypergeometric series of the form (4.14). One obtains 

z1.11. 

4<(1 +<) 

1 1  I 
2 2  2 

+ U  - -d, -d -a'; (Y + -, 1 +U -a'; - 

+or cf or' (4.21) 

x F (A - a, f d  - a'; d - or -a ' ;  - 4 W  +e) )  (4.22) 



1 1  1 
2 2  - 2  

a! - -d ,  -d - U'; CY - -, 1 + - a'; - 

+a * a!'. (4.23) 

To solve for Z,II,I,I we require the transformed function J$&) with the result for the inverse 
transform of the general case (A.ll) which is given in the appendix. For z1v.1~ we use 
fIv(k) with the inverse transform (A.17). To obtain Z,~,IV in the form (4.22), we follow a 
similar procedure to the other two cases, hut also use a relationship between hypergeometric 
functions with argument -z and hypergeometric functions with argument -l/z to simplify 
the expression. 

The solution to the integrals in (4.16) to (4.23) all have a pole at a! = d/2 except 
for (4.18). This pole arises due to the short distance logarithmic singularity for r - x in 
each of these integrals when a = d /2 .  

We are now in a position to evaluate integrals of the type (3.1) with products of more 
general functions than those discussed thus far. For example, if we consider the function 
gu,b given in (4.13) which was derived from the definition of ja,b in (4.10), then since 

- 

g u , b ( k ) j b . c ( k )  = (4.24) 

it follows directly that 

This is a~ solution to an integral of the product of two hypergeometric functions with the 
special form (4.13). This relation is useful in the large-N expansion of the O ( N )  sigma 
model with the Ordinary transition, where the Green function of the auxiliav field A is a 
hypergeometric function of exactly this type [7, IO, 1 I]. 

We may generalize this further by considering the function 

- r(a - $k)r(a + i i k ) r (b  - $)r(b + iik) - (4.26) 

The methods of the appendix can then be used to obtain the inverse.transforms of this 
function provided S = f A  or S = ~ $  + ;A. The inverse Fourier transform givest 

r(c - i ik)r(c  + $ik)r(S - iik)r(8 + $ik) ' i n b , c d ( k )  

xqF3 (2". b + a .  1 + a  - c ,  1 + a  -8 ;  1 + a  - b, c+a ,  S + a ;  e-J1B1) 

+ a  tf b .  (4.27) 

+ ;A we find Subsequently, using (A.ll) for the case 6 = 

1 r(2a + A)r(b - a)r(b + a) 1 
gub.cd( t )  = - 4 k - I ~ ~  r(c - a)r(c+ a ) r ( i  + ;A -a)r(f + $A+ a) [t(i + t)y+!~ 

t This function. is related to the Meijer's C-function which is defined by the contour integration of combinations 
of Gamma functions with aiguments of a particular form [9J. 
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f fh ,  f + a  - fh , c  - b ;  1 +a - b,  a + c ;  - 

+a+b 

whereas when 6 = $A, using (A.17) we obtain 

(4.28) 

45~1 + e )  
1 1 

2 
+ a  - - l , c  - b ;  1 + a  - b,a  +c;  - 

+a*b.  (4.29) 

Thus provided 6 is one of f h  or f +fh then &b.c&) can be obtained as 3F2 hypergeometric 
functions. The solutions to the integrals in (4.21)<4.23) represent special cases of these 
functions. More generally, integrals of products of these types of 3F2 hypergeometric 
functions are possible. Since 

i (k )ub.cS i c r , b / ( k )  = g ( k ) u s S f  (4.30) 

lmd2 P-lr ~ & b , . " d ) g c e . b / ( ? )  = & e . S f ( c )  

- - - 
then it follows that 

1 
(4.31) 

provided 8, f = f h ,  $ -E ih.  Similar integral relations can be derived by considering 
possible combinations of g.,b with g.& with particular choices of the parameters a ,  b ,  c. 6. 
Integrals such as these occur in a discussion of the large-iV expansion of the O ( N )  sigma 
model with the Special transition where the Green function for the auxiliary field A contains 
hypergeometric functions of this type [7, 11,121. 

5. Integrals involving spin factors 

We now turn our attention to conformally invariant integrals involving spin factors which 
occur in the discussion of two-point functions of vector and tensor fields. For this we define 
fields X,, f,, with scale dimension zero, which transform as vectors at the point x under 
conformal transformations that leave the boundary fixed. 

These are constructed to be unit vectors so that X,X, = f,t, = 1 .  
We will use the example of an integral with one spin factor in the integrand to illustrate 

the method. Such an integral would be appropriate for correlation functions involving a 
single vector field. We define 

which has the functional form 1, = I ( t ) X p  due to conformal invariance. To find I ( $ )  we 
use the fact that X, is a unit vector to obtain 

(5.3) 
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Now, since 

the methods of section 4 can be used to solve for I ( 6 )  in terms of hypergeometric functions. 
For example, if we take 

then we may use the solution to the integral ZI,,,,V in (4.22) to obtain 

, r(; + ;d - d r ( ; d  - a m ;  +a +U' - $1 1 
I ( ( )  =rid 

r(f+u)r(u')r(~+d-O1-a') E(1 + e)l'fu'-fd 

x F  (d - 2 u , d  -2u'; 4 + d  - 0 1  - d ;  -5) , (5.6) 

The case where 01 = f ( d  - 1) can be  worked out by an alternative method by noting thatt 

so that from the definition of I ,  in (5.2), 

This result may be rewritten as a differential equation for I ( e )  
(5.9) 

which may be solved to give 

Sd 1 F (1, d - k' ; 1 + fd - 0 1 ' ;  -5)  . (5.10) I c e )  = - d - 201' [ ~ ( i  + e)]m'-h 

The constant of integration is taken to be zero, because otherwise the presence of such a 
term would violate (5.8)~by producing an extra delta function contribution to the RHS. This 
solution is in agreement with (5.6). A similar procedure can be used for integrals involving 
more spin factors, which would be appropriate for correlation function involving the energy 
momentum tensor or two vector fields for example. Such integrals are evaluated in I by a 
slightly different method. 

6. Large-N expansion for the O ( N )  model 

In this section, by way of conclusion, we demonstrate the use of the of the parallel transform 
method to to calculate two-point functions in the 1/N expansion of the O ( N )  non-linear 
sigma model for the case of semi-infinite geometry. As usual, the nonlinear constraint on 
the fields @.(x); 4' = N can be removed by introducing an auxiliary field h(x)  in the 
Lagrangian via an interaction term L.1 = ;A@'. To analyse the two-point functions of the 
fields @a and A we first define 

(&(x)@p(x' ) )  = Gm(x, x'&p ( U x ) U x ' ) )  = Gi(x,x').  (6.1) 

7 For this we recall that -i1*s2-" = (d - Z)Sd6'((r). 
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Then, to zeroth order in the 1 / N  expansion, these Green functions satisfy the following 
relations [13]: 

(-V2 + (h(x)))  G+(X, X ' )  = s d ( X  - x')  (6.2) 

Both of these relations may be solved by making use of conformal invariance and using the 
parallel transform method discussed in section 3. For this we write 

Since 274 + = d due to conformal invariance of the integral in (6.3), then the zeroth 
order result 74 = i d  - 1 implies that VA = 2 to this order. Now, with the scaling relation 
(h(x)) = A1/4y2, it is possible to obtain G4 as a solution to a differential equation. 
Alternatively we can recast (6.2) into an integral equation so that the method of parallel 
transforms can be used to obtain a solution. Writing 

ddr H(x, r)G+(r, x')  = sd(x - x ' )  (6.5) s 
requires that 

H ( x ,  r') = -v2 + - s"(x - x') ( '3 
The integral of H ( x ,  x ' )  over planes parallel to the boundary may be written as 

defining to be 

(6.6) 

(6.7) 

The subsequent Fourier transform of &ez, e"') gives the simple expression 
- 
i(k) = k2+ 1 + A A .  (6.9) 

We may now solve for G+ by first integrating the integral equation (6.5) over planes parallel 
to the boundary and then taking the Fourier transform as defined in (3.10). The resulting 
equation is 

k(k)?+(k) = 1 (6.10) 

where f+(k) is the transform of the function f+Q) defined in (6.4). Consequently the 
desired result is 

- 

- 
If we are now express f&) as 

(6.11) 
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then we may use the result (4.13) to obtain the inverse transform directly: 

This general form for fm(() gives the correct largeN Green function G&, x ' )  appropriate 
for both the ordinary and special transitions in the statistical mechanical context where we 
should take p = (d  - 3)/4 and p = (d - 5)/4 respectively [ 141. Solutions for G l ( x ,  x ' )  
can now be obtained in a similar way via the integral equation (6.3). Results for Gi(x,  x ' )  
for both the Ordinary and Special transitions were calculated with the parallel transform 
method in I and also in [10-12] by a different method. It would be interesting to see if 
the next order in the 1/N expansion can be obtained using the methods discussed in this 
paper; this is the subject of future research. 

Acknowledgments 

I wish to thank Hugh Osborn for many useful ideas and suggestions. This research was 
funded by a Postdoctoral Research Fellowship from the National Science and Engineering 
Research Council of Canada. 

Appendix. Hypergeometric function relations 

In this appendix we derive some essential hypergeometric function relations that are needed 
in section 4. We start with the definition of the hypergeometric function 

z" F(a.  b; c;  z )  I- 
n=O n. (4" 

where (U),, = r(a +n)/ r ( a )  is the Pochhammer symbol. There is a natural generalization 
of this definition, which is called a generalized hypergeometric series 

For application to section 4 we need to consider the inverse parallel transform of functions 
of the following hypergeometric form: 

(A.3) 

L(sinh'8) =e-a'lsly+lF,(2a,bl,. . . b , ; c l ,  ...~~:6~1'l) (A.4) 

where ci = I + 2a - bi. To take the inverse transform we express these results as the sum 
indicated by (A.2) and then observe that, with p = sinhZB 

B(sinh2 8 )  = e-4ulsly+l F4(2a, bl , . . . b4; cI, . . . c 'I, ' e-41s1) 

where p = 2a + 2n for j and p = a + n for f i .  We can now obtain the inverse transform 
by using 
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with the result 

The techniques for finding the inverse transform of 2 and f i  are related, except that for I; 
it is necessary to use (A.7) while for J either of the equivalent results (A.8),(A.9) may be 
used. Both of these equivalent results are helpful, because two different expressions for 
g(<) can be derived from them and a nice simplification of these expressions occurs for 
different values of the parameters b:. For the purpose of this discussion we will focus on 
the inversion of for which we use (A.9) with p = 2a + 2n to obtain 

1 1 
f n ,  - + a  - - A  + n ;  2 2 X 

(A.lO) 

By expanding the hypergeometric function, g(5) can be rewritten as 

where the coefficient GN is given by the finite sum 

(A.12) 

This can be simplified further by using the following identities for the Pochhammer symbol: 

(2a+h)2,(a+ ; i + n ) N - ~ ( ~ + a - ~ A + n ) N - n  
4"(2a)~n(1 + + 2n)N-n 

X 
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so that G N  becomes 

a , c l , .  .. , cq,  1 + a  - ;A ,  1 + 2a+ N; 1 (A.14) 

The finite q+*Fq+3 finite hypergeometric series, with argument 1, has a special form because 
cl = 1 + 2a - bi. As a consequence, for the particular case q = 1, the resulting 5F4 can be 
summed exactly by a special limit of Dougall's theorem which states that [15] 

sF4(2a, 1 + a ,  b,c, -N; a ,  1 +2a - b ,  1 +2a  - c ,  1 + 2 a +  N ;  1) 

- (1 + 2 a ) ~ ( 1 + 2 a  - b - C ) N  

So for q = I and applying Dougall's theorem we find 

- 
(1 + 20 - b)N(1 f 2U - C ) N  ' 

(A.15) 

) . (A.16) 
1 1 1  

XZF,  a +  -A, - - -h+a~-bb: 1 +2a -b; - 
( 2 2 2  4 a 1 +  5 )  

This result and the inverse fourier transform (4.11) are sufficient for verifying the integral 
hansfoms in (4.8) and (4.9). 

Although a generalization of Dougall's theorem is not known for arbitrary q, the 
coefficient G N  can usually be simplified to give a finite 5F4 series through cancellation 
of the parameters. However, for this cancellation to occur it may be necessary in some 
cases to use an alternative formula for g(e) which may be derived from (A.8) following a 
similar procedure. The result is 

where 

- ( f + a + i ~ ) ~ ( l + a - f ~ ) ~  
GN = 

N!(1 + 2a)N y+4Fq+3(2a, 1 + a ,  bl,. . ., b,,a + fh ,  -N; 

a, cI, ... , cq, 1 + a  - ;A, I + 2a + N ;  1) . 
The calculation of h ( f )  proceeds in a similar way. Using (A.7) one gets 

where 

(A.18) 

(A.19) 

a ,  c ~ ,  . . . , c,, 1 + 2a + N ;  1) . (A.20) 
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Again we recall that ci = 1 + 2a - bi. For the case q = 1 which is relevant for section 4 
we use a theorem similar to Dougall's: 

to obtain 

(A.22) 

References 

111 M y  I L 1984 Nucl. Phys. B 240 [FSlZ] 514 
17.1 Wegner F 1976 Phase Trmitionr and Critical Phenomena volume 6, ed C Domb and M S Green (New 

131 Ginsparg P 1989 Chomps, Cordes et Ph6nombes Critiques ed E B k i n  and I Zinn-Justin (Amsterdam: 

141 Cardy I L 1987 Phme Tramitions ond Criticul Phenomena vol 11, ed C Domb and I L Lebowitz (New 

151 DEramo M. Peliti L, and Parisi G 1970 Len. Nuow Cimento II 2 878 
161 Symanzik K 1972 Lctc Nuwo C-nto 11 3 134 
[7] McAvity D M and Osbom H 1995 Conformal field theories near a boundary in general dimensions Preprint 

IS] Gel'fand I M, Graev M I, and Vilenkin N Y 1966 Generalized Functionr vol 5 (New York: Academic) 
191 Gradshteyn I md Ryzhik I 1980 T d l e  of hfegmk,  Series, andPmducIs (New York Academic) 

[IO] Ohno K and Okabc Y 1983 Phys. Lett. 95A 41 
1111 Ohno K and Okabe Y 1983 Pros. Theor. Phys. 70 1226 
[I21 Ohno K and Okabe Y 1983 Php.  Lctt. 99A 54 
[I31 Vasil'ev N. Pis"& Yu M, and Khonkenen Yu R 1981 Theor. Math. Phys. 46 104 
1141 Bray A I and Moore M A 1977 1. Phys. A: Math. Gen. 10 1921 
[15] Slater L 1 1966 Generalized HypeQeometric Functions (Cambridge: Cambridge University Press) 

York Academic) 

Norrh Holland) p 3 

York Academic) p 55 

DAMTPM-I, UBCCTP-95-002 cond-maU9505 127. 


