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Integral transforms for conformal field theories with a
boundary
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V6T 1Z2, Canada

Received 11 July 1995

Abstract. A new method is developed for solving the conformally invariant integrals that
arise in conformal field theories with a boundary. The presence of a boundary makes previous
techniques for theories without a boundary less suitable. The method makes essential use
of an invertible integral transform, related to the radon transform, involving integration over
planes parallel to the boundary. For successful application of this method several non-trivial
hypergeometric function relations are also derived.

1. Introduction

At a critical point most statistical mechanical systems are not only scale invariant but are
also conformally invariant [1,2]. This principle has profound implications for calculations
of the correlation functions, critical exponents and universal amplitudes of such systems [3].
In two dimensions, where the conformal group is infinite dimensional, multipoint comrelation
functions are more strongly constrained then in dimension 4 > 2, where the conformal group
is finite. However, consideration of 4 > 2 is also important, particularly in the statistical
mechanical context when d = 3. In the case of general 4 conformal invariance still provides
quite powerful constraints. For example, in the infinite geometry R¥ the forms of the two
and three point functions of scalar fields in a conformal field theory are determined exactly
(up to normalization) by the restrictions of conformal invariance.

Cardy has shown how to generalize the principle of conformal invariance to the case of
the semi-infinite geometry R4, so that surface critical phenomena can be probed using these
techniques [1,4]. In ]Rff_ it is only appropriate to have conformal invariance under conformal
transformation which leave the boundary fixed. In this case the restrictions on the form of
correlations functions are not as strong. In particular the form of the two-point function
of a scalar field in RY is restricted by conformal invariance only up to some function of a
single conformally invariant variable [1]. This function must be then be determined for the
particular theory under consideration.

In this paper we outline a powerful method, which makes essential use of conformal
invariance, for calculating the two-point functions of scalar, vector and tensor fields of
conformal field theories in the semi-infinite space RY. In particular we give a prescription
for treating the conformally invariant integrals that arise in a diagrammatic expansion of the
theory. Techniques for handling such integrals have been developed for the infinite space
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RY, and have proven to be very useful [5,6]. However these techniques do not extend to
R% and so this alternative technique is developed.

2. Conformal invariance

A transformation of coordinates x,, — x§(x) is a conformal transformation if it leaves the
line element unchanged up to a local scale factor £2(x). That is

dxfdxs = Q(x)dx,dx, . 2.1)
For the discussion of two-point functions of fields in a conformal field theory we need to

consider the effect of conformal transformations on these fields. If a field O(x) transforms
under the conformal group as

Ox) — O%(x8) = Q(x)O(x) @2

for some 7, then O(x) is said to be a quasi-primary scalar field with scale dimension . A
quasi-primary vector field V, (x} with scale dimension 5 is one which transforms as

V(x) = VE(x5) = Q(x) " Rya(x) Ve l(x) (2.3)

where R, (x) = Q(x)8x} /3x,. The transformation for quasi-primary tensor fields foilows
analogously. We will restrict our attention to quasi-primary fields in this paper.

In the semi-infinite space ]Ri we define coordinates x, = (y,z) where y measures
the perpendicular distance from the boundary, and the @; are coordinates in the (d — 1)~
dimensional hyperplanes parallel to the boundary. The two-point functions of scalar
operators are restricted by translational and rotational invariance in planes parallel to the
boundary to be

(O1(x)02(x)) = G, Y, [z — 2]) ' (2.4)
and scale invariance further restricts the form of G 1o depend on two independent scale
invariant variables s2/y* and 52/y'2, where s> = (x — x)*. This situation should be
contrasted with the case of infinite space where it is not possible to construct a variable from
two points which is invariant under ail of scale, translational and rotational transformations.

For two points in RY conformal invariance provides further restrictions. Under
conformal transformations which leave the boundary fixed

2

2 S Y 1] y
 ame ) Tam T am

50 that only one independent conformally invariant variable can be constructed from two

points

s

5 ¥ (2.5)

2 2
5 2 __ 5 §
— —_—— or V= = = —— 2_6
§ 4yy’ 7 1+E 26)
where 52 = (& — @)% + (y + y")? is the square of the distance along the path between x
p

and the image point of x’.
As a consequence, the correlation function of two quasi-primary scalar fields may be
written as
1
2y (2yHm
for some arbitrary function f{£)7.

(i) O (x)) =

f§) (2.7

f The £ — 0 and £ — co limiting behaviour of this function is fixed by the operator product and boundary
operator expansions [7].
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As an example we consider free scalar field theory, where the field ¢(x) satisfies
Dirichlet or Neumann boundary conditions at y = 0. Then by the method of images
the Green function is simply

, , 1.1 A :
BWIBEN = Gor, ) = 4 (5 = ?,_2) - o O 9

where

n i

{d — 28,
In the above expression the upper (lower) sign corresponds to Neumann (Dirichlet) boundary
conditions and the factor Sy = 2x¢ /F(-;—d) is the area of a unit hypersphere in d
dimensions.

In [7], henceforth referred to as I, the form of the two-point functions of scalar, vector
and tensor fields was worked out in detail for the O(N) sigma model in both the £ and
large-N expansions. These calculation were significantly simplified by the use of a new
technique to solve the conformally invariant integrals on R, that naturally arise. In the next
section this technique is discussed in detail.

ne=1d—1  fE)=EL(1+8)7. 2.9)

3. Paraliel transform method

‘We consider integrals of the form

F&) = fo az fd“-‘r L AE AE)

@2)¢ (3.1
e Nt S »
T 4yz T 4yz STEM

where conformal invariance restricts the form of the integral to be a function of £ only.
This follows because under conformal transformations which leave the boundary fixed,
the integration measure transforms as dx — Q(x)~¢d%x and the factor 1/(2z)¢ —
Q(x)?/(22)? so the local scaling factor cancels.

Given functions f; and f» we may solve integrals of this type indirectly by first
integrating (%) over hyperplanes parallel to the boundary}

d—1 na f (y = ¥)? 1
[¢e ro = P @ o= oo a=ie-v 3.2)
which defines the function F(p) to be
5. Al
70) = Zos fo du " fu+ p) . | (3.3)

The crucial point is that this defines an integral ransform f — f which is invertible. Thus
F (&) can be retrieved from f(p) via

_ 1 o a1} L
1O = s |, w0 e+, 69

The integral in the above formula is actually singular for values of A that we consider here,
but the inversion formula may still be defined by analytic continuation in A from Re(A) < 0.

i This is related to the Radon transformation of f{x) [8], which is defined as the integtal of f{x) over all possible
hyperplanes in IRY, Here we consider integrals over the subset of hyperplanes in R4 which are parallel to the
boundary, '
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To verify that the transformation (3.3} is compatible with the inversion formula (3.4) it is
sufficient to make use of the folowing relation involving generalized functions:

f du (o — )y ud = By, 2) o ~ T(=TW8(0) as [ — —h. (3.5)
For the case d =3 when A = 1 we use
—a—t
Pt '
~ A 3.

TN &'(p) as -1 (3.6)

to reduce the inversion formula (3.4) to the simple form
1 »
FE&=-——7®. (3.7)

Now that this parallel transform has been defined it is possible to derive an integral
relation for the transformed functions by integrating (&) in (3.1) with respect to « 50 that

N 001ﬂ~_~, . — 2 ., r a2
ﬂm=Ldz£ﬁmﬁm) p=95§- pﬁgﬁfl. 3.8)

In order to solve integrals of this type we first change variables z = %, y = &% and
y = ¢® so that equation (3.8) becomes

£ (sinh?(8, — 8)) = f “do Fi (sinh®(@ — 61)) > (sinb?(@ — 62)) . (39)

Now by taking the Fourier transform

~ =] -
fo = f do &*° f(sinh? ) (3.10)
-
then by the convolution theorem the transformed integral relation (3.8} becomes
F = f100f,0). (3.11)

Thus we may solve integrals of the general type given in (3.1) by this double integral
transform method provided that it is possible to make the transforms f;(§) — ﬁ-(p) —
Fi(k) for both the functions f; and f> and that the subsequent inverse transforms of the
resulting function F(k) can be made. Of course the form of the functions f; and f5 are
crucial in order for this procedure to be successfully undertaken. For the typical cases which
arise in the diagrammatic expansion of a conformal field theory this method has proven to
be very successful, although the intermediate steps often involve non-trivial manipulations
of hypergeometric functions. In the next section several examples which are likely to occur
in calculations in conformal field theory are given to illustrate the method, and provide a
table of transforms for future reference.

4, Ilustration of the method

For application to the caleulation of two-point functions in 2 conformal field theory we
may use this method to solve the integrals over products of propagators that occur in a
diagrammatic expansion of the theory. Therefore, by considering, for example, the Green
function of the free scalar field given in (2.8) we wish to solve integrals of the following
type:

1

I= ‘/;wdz fdd"q- (Zi)ﬂ (52)* @Z)E(ga)a’(g.g)a'

(4.1)
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with

F=(@-—-r)+ -2 P=@-r'+0+2)

=@ -+ -2 F=@ -+ +2%
For conformal invariance, following (2.5), we must also require -

et+a@+o +&@+pf=4d. 4.2)
This integral may be feadily cast into the general form (3.1), for which we should then take

1 1 1 1
(2y)“+3 5“(1 + g)a (zyl)a"+'6?' é""(l + s,)a,-' .
Later in this section we will consider the more general integrals that arise in the discussion
of the large-N expansion of the O(N'} sigma model, where the propagator for the auxiliary
field A has a more complicated functional form.
~ To solve the integral (4.1) using the method of section 3 we first take the sequence of

transforms f — f — f as defined in (3.3} and (3.10) for functions of the form f; (%)
above. For simplicity we take

HEY=

fie) = (4.3)

1
= —, = - 4.4
O = mrrEr @.4)
The first transform f — £ follows from standard references:
. n.JL -] i
— d A—1
o= 15 | @ i ra o
Plo+& — ) 1 — . 1
A —F — A, 0 ;—1. .
T t3) (4ot (oe+oz oz_oz-}-oe 1+p) {4.5)

The function F(a, b; c; z) is a hyperggometric function whose definition is given in (A.1)
For the subsequent transform f — f we consider the cases @ = 0, a = 0, v =&
separately

fig) = .

I = %‘a

. M- 1

filey = fr*—l:(-&)— pr . (4.6)
2o _ 3aT Qe =200 — 20 +22) | Pl@—3+ 1ik) L Te-i- Lik)

T} +o — 1) Nl —a+Ar+1ik)  I{l—a+i-—Lik)
1

Ju)y = aTe7

2 T@-» 1

Julp) == T@ .+t 4.7)

1
T@rG+a-»

Fully= i [@ - A+ 4@ - — Lik)



6920 D M McAvity

1
n® = e
,. G FQRa—2) 1 _ o
Fooiy = widge-ta FGE — O T@ =53 = 4T = 5 + 5ik)

T [+ 3r—HOMG + 1A+ k)

There is one other case, a particular combination of two functions of the type (4.4), which
is of interest, namely

_ _BHL
ﬁV(E) - E“(l +$)a
. FRo—i—1) 1 1
Fiv(p) = 27* e D) (1+p)h_l_lF(2a:—}L——l,a—l; 2 - 2; m) (4.9)
am3a D GE — ) Dot — sh—f— T — A -3+ 4k

fw(k) =4

[(a) T(3A = 3T (GA 4+ Lik)

The last two cases, fu1 and fiy, are important because the more general case where &
differs from « by any integer follows in a straightforward manner from them. However,
the derivation of those two results directly is non-trivial. The simplest way to verify them
is by working backwards and taking the inverse transforms. A general procedure for taking
the inverse transforms is discussed next.

For application to conformal field theory where we have integrals of the form (3.1)
then the transformed relation (3.11) suggests that we need to take the inverse transform of
products of the functions F.(0) in 1 to IV. In all of these cases the dependence of f &)
on k is through combinations of Gamma functions. Consequently, by considering the poles
of the Gamma function, the inverse Fourier transform f — £ of 3. 11) can be performed
by contour integration. We first consider the following combination of Gamma functions
which is appropriate for verifying the transforms of fyr and fiv above:

['a — k) (a + §ik)

Bap®) = T LIOT (b + Lik) (4.10)

The poles of I'{a — ﬁik) oceur at %ik = a + n with residue (—1)"/n! (for # a non-negative

integer). Therefore, the inverse transform is obtained as a sum of the residues of 2, ,,
resulting in a series that has hypergeometric form

I
§a,b(sinh2@) = Efdk e—ms P o)

3 4T (2a)
T T —-a)T(b+a)

e PIF(2a,a ~ b+ 150+ b; e )

_ 4T (2a) 1
T I'(b—a)T(b + a) (4cosh?g)™

1 1
Fl2a,a+b——;2a+2b—1; )
( 2 cosh? @

(4.1

By choosing appropriate values for a, b, and noting that cosh?@ = 1 + p then the Fourier
transformed functions f i and f v follow directly from this result. To obtain the inverse
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parallel transform we vse

1 ea i T'(p+ 1) 1
— | dpp~*! = 4,12
wmﬁ (+p+87 - () (10 @12
with p = 2a + n, in the last line of {(4.11) so that
@ = T'(2a + ) Tl
bS] = PaTOT (6 — )T b+ a) (1 + 5%
xF(Za-l—l a-tb 1'2a+2b 1: L 4,13
, X 'Tve) (4.13)

Now, with the appropriate choice of a,b, we can use this result to verify the parallel
transforms fu; and fw in equations (4.8) and (4.9).

In order to solve the integrals of_the type (3.1) we must find the inverse Fourier
transform of products of the functions f;(k) in I to IV, These may can be simply obtained
as hypergeometric series by contour integration in a similar way to above above calculation,
The procedure for finding the inverse parallel transform differs, though, because it is not
always possible to make the simplifying manipulation of the hypergeometric function that
is made in (4.11). This is because the hypergeometric series is often of higher order.
However, a procedure for taking the inverse transform f — f which bypasses this step
is derived in the appendix. This procedure makes essential use of a special property of
the hypergeometric series which arises on taking the inverse Fourier transform, that is due
the symmetry é(k) = ﬁ(—k'). After taking the inverse Fourier transform of products of the
functions in I to IV, we obtain a hypergeometric series with one of the two following forms:

#(sinh?8) = e™*® | F,(2a,by,---byicy, - cp; €700 (4.14)

hi(sinh?@) = e~ F,(2a,by, - Bysc1, - - oy €72 (4.15)

where the notation . F, refers to a generalized hypergeometric series which is defined
in (A.2). The crucial point is that the parameters b; and ¢; in these functions are always
related by ¢; = 1 + 2a —~ b;.

- We now present the inverse transforms of six of the possible combinations of the
functions in I to IV, which have been obtained using this method. These represent solutions
to particular integrals of the type (3.1). First we consider products of the functions f; and
Su- In these cases the inverse Fourier transform results in hypergeometric series of the
form (4.15) and the inverse parallel transform can be found via the methods outlined in the
appendix. Thus, using {A.22), we obtain

oo d—1 1 11
z,x(§)=f0 dzfd P
Tl+e+e —d)rEd —a—o)
=T
F( - 3d)C(3d)

Fle,o'; 1+ a+o — 1d; —£)

NG ;P(3d —a)T(3d — ) 1
rid —o—a Y (o)) §a+a'-§d

xF(3d —a,3d ~ o', 14 $d ~ o —o'; —£) 4.16)°
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Y d—1 1 1 !
Ziu(®) —j; dz fd T (22)4 g (1 + £

1d1"(1+a+a —d)l"(zd —-o)
NG A0 (1 + o —-d)

Fla,o; 1d; —§) (4.17)

® 1 1 1
T = | dz | d¢? - -
nu(€) j; z[ r R UL Er QLD

Y l+aet+a —d)
Tl +ato —id
In order to bring these results to th.lS form it is necessary to use several identities of the
hypergeometric function which can be found in the standard references [9].

If we take the limit o + &’ — d in these integrals, which corresponds to § — 0 in the
original integral (4.1) then the following relation:

1 1y
((x__x_;;z)_%:!:ENz_‘éSda (x—-x) as ﬂ"'->0 (419)

can be used to show that

F(a o l+a+o —id; —§). (4.18)

JGd—-ardd —o)
INCAINCY
in the limit & 4+ o' — d. This is the expected result when the range of the integral (4.1),
with @ =& = 8 = 0, is extended to the infinite space B?. In a similar way it is possible
to show that if & + o' = d then Ty + Iy 1 = 0, where Ty ; is defined by taking ¢ <> &’ in
Iin.
We now evaluate three more conformally invariant integrals involving combinations
of the functions fiy and frv. In these cases the inverse Fourier transform results in a
hypergeometric series of the form (4.14). One obtains
o 1 1
T = f d ‘/‘dd_'i'f' = = =
1) A z R B+ B Ee (1 + BN

T+ Iyn = w4

84(x — x") {4.20)

1"( sd — o'\ —a) (o +a —A) Ld g'—1d 1
I(3d — D@ (@ + 3) 51+ 5"
X3 Fp (u:, 14oa— %d, %d-—a’;a—i—%, l4+a—o —Zgﬁ"-)')
do o ; 4.21)
e I 2’§’+ 1
Inav(€) = f dz] (22)‘15“(1 B+ B
_T(Gd-a)T(3d - o)l +a' - %d)n%d 1
B MeM@)(d — o — o) [£(1 + &)r+e—3d
x F(A~o,id —o';d —a — o ; —4E(L + £)) (4.22)

= 4 b 2E4+1 2F 41
i = d g1 = T T z
. IV.N(&) ]ﬂ; Z/ r (ZZ)"‘ ?,-‘“(1 + E)"‘ gm’ (1 + Er)a’
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_TGd-aP@ —al@+a —1=3) 4y 4y 2%+]

Tdd—alEe@-3 B+
1,1, 1 L1
XBFz(a',l-i-O!—Ed,ad—ﬂ,&'—a,l*ﬁ*ﬂ!**ﬂ, —4;—_(1+§))
o oo . T (4.23)

To solve for Zyy iy we require the transformed function f m(k) with the result for the inverse
transform of the general case (A.11) which is given in the appendix. For Zyy v we use
f w(k) with the inverse transform (A.17). To obtain Zyy v in the form (4.22), we follow a
similar procedure to the other two cases, but also use a relationship between hypergeometric
functions with argument —z and hypergeometric functions with argument —1/z to simplify
the expression.

The solution to the integrals in (4.16) to (4.23) all have a pole at & = d/2 except
for (4.18). This pole arises due to the short distance logarithmic singularity for r ~ x in
each of these integrals when o = d/2.

We are now in a position to evalnate integrals of the type (3.1) with products of more
general functions than those discussed thus far. For example, if we consider the function
Zup Siven in (4.13) which was derived from the definition of éa,b in (4.10), then since

2, 50008y o (k) = 2, 0 (R) (4.24)
it follows directly that
o0 1 - _ 8a.c(€) ) a#c
f &z f Er i) = | (4.25)
0 (22) (4yy)298%(x — x) a==c .

This is a solution to an integral of the product of two hypergeometric functions with the
special form (4.13). This relation is useful in the large-N expansion of the O(N) sigma
model with the Ordinary transition, where the Green function of the auxiliary field A is a
hypergeometric function of exactly this type [7, 10, 11].
We may generalize this further by considering the function
5 T(a — ;i) {a + FiOT (b - JiOTG + 1k)
8ab,csk) = (4.26)
Fle— Elk)l‘(c + 41k)1"(§ - LreE + Elk}

The methods of the appendix can then be used to obtain the inverse transforms of this
function provided & = ']il or 8 =*% + %A. The inverse Fourier transform givest

TEALG-alC+a) - _yy
T(c—a)(c+a)[ (3 —a)[(8+a)

Bub.cs(sinh? ) =

><4F3(2a,b+a.l-[-a—c,1+a—8;1+a—b,c+a,5+a;e’4l9|)

+ta<eb. 4.27
Subsequently, using (A.11) for the case § = % + %JL we find
1 F2a+ )G —a)T'(d+a) 1

8o 6) = P(c—a)T(c+ @G+ 3k — )P + Ia+a) (g1 + )10+

1 This function, is related to the Meijer's G-function which is defined by the contour integration of combinations
of Gamma functions with arguments of a particular form [9].
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XaF (a—l—%l,%-{-a - %l,c—b; l1+a—-b,atec; —4—‘5_(?1:5)
+a <> b (4.28)
whereas when & = 1A, using (A.17) we obtain
= M'2a+ MG —a)l (b +a) f+1
Bunet™S) = Tl T e — )T (o + AT Gk — )T (A + @) [5(1 + £)) oA
x3F 1+ +lll+a llc—b'1+ bya+c; -
342 2 a 27 2) s a » C’—4§(I+§)
+a < b. {4.29)

Thus provided § is one of %A or %+ %}L then g.p.c5(§) can be obtained as 3 F> hypergeometric
functions. The solutions to the integrals in (4.21)+(4.23) represent special cases of these
functions. More generally, integrals of products of these types of 3F; hypergeometric
functions are possible. Since

B0V abc Beepy ) = ERDae 37 (4.30)
then it follows that
e a1 1 £ £
fo dz [ & 'r wgab.ca(f)gce.bf@ Y = guesr () 4.31)

provided 8, f = 4A,% + 4i. Similar integral relations can be derived by considering
possible combinations of g, , with g, .5 with particular choices of the parameters a4, b, ¢, §.
Integrals such as these occur int a discussion of the large-N expansion of the O(N) sigma
model with the Special transition where the Green function for the auxiliary field A contains
hypergeometric functicns of this type [7, 11, 12].

5. Integrals involving spin factors

We now turn our attention to conformally invariant integrals invelving spin factors which
occur in the discussion of two-point functions of vector and tensor fields. For this we define
fields X, X, with scale dimension zero, which transform as vectors at the point x under
conformal transformations that leave the boundary fixed.
= 25,8 Ry = st

Ei(l+ )1 §1(1+€):
These are constructed to be unit vectors so that X, X, = £,X, =1.

We will use the example of an integral with one spin factor in the integrand to illustrate

the method. Such an integral would be appropriate for correlation functions involving a
single vector field. We define

.k . €5.1)

H

co 1 - . .
L= I®)X, = fo dz f ¢t SR i®LE) 5:2)

which has the functional form I, = f(£)X, due to conformal invariance. To find I(£) we
use the fact that X, is a unit vector to obtain

o0 1 . . ~
_ d-1 . ‘
16) = fo dz f &l - DAORE). (5:3)
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Now, since

E _ [nE!
ko go GEFDEEFD-CE4D 54
HeA+EEA+8))
the methods of section 4 can be used to solve for 7(£) in terms of hypergeometric functions.
For example, if we take

I 1
— _ O 5.5
FO=fairegr  PO=maioe (55)
then we may use the solution to the integral Zyyy v in (4.22) to obtain
e = 1, TG +3d-olGd - TG +a+o —id) 1
FrG+e)Te)(E+d—o—oao) [E(1 + £)jeter—1d -
XF(d—20,d-2a"; s +d—a—o;-E). (5.6)

The case where @ = %(d — 1) can be worked out by an alternative method by noting thatt
1 X
3 - = S48 x —r 5.7
‘ (<2y>‘f" B+ en%“-”) e 7
so that from the definition of f,, in (5.2),

1 1 1
| =——=1,1=35 - - 3.
g ((2y)d-1 ”) N EA+HF 8
This result may be rewritten as a differential equation for I(§)
1
1+ §)]54-01 5.9
% = (B + i) = 4 St 59)
which may be solved to give
I(§) = 5 : F(l.d—2';1+3d-o';-£). (5.10)

d =20 [£(1 +£))9

The constant of integration is taken to be zero, because otherwise the presence of such a
term would violate (5.8) by producing an extra delta function contribution to the RHS. This
solution is in agreement with (5.6). A similar procedure can be used for integrals involving
more spin faciors, which would be appropriate for correlation function involving the energy
momenium tensor or two vector fields for example. Such integrals are evaluared in I by a
slightly different method.

6. Large-N expansion for the O{IN) model

In this section, by way of conclusion, we demonstrate the use of the of the parallel transform
method to to calculate two-point functions in the 1/N expansion of the O(N) non-linear
sigma model for the case of semi-infinite geometry. As usual, the nonlinear constraint on
the fields ¢ (x); ¢*> = N can be removed by introducing an auxiliary field A(x) in the
Lagrangian via an interaction term £; = %}quz. To analyse the two-point functions of the
fields ¢, and A we first define

{Go (X)Pp (X)) = Gylx, x"Voug (MxIA(xN)) = Gu(x,x). (6.1)

% For this we recall that -2~ = (d ~ 2)S489(s) .
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Then, to zeroth order in the 1/N expansion, these Green functions satisfy the following
relations [13]:

(=V2+ () Golx, 1) = §(x — x) (6.2)
f dr G3(x, 1)GL(n X'y = —%54 (x—x). (6.3)

Both of these relations may be solved by making use of conformal invariance and using the
parallel transform method discussed in section 3. For this we write

Gylx,x") = fo(8) Gilx, x') = LG (6.4)

Since 2ng + 15, = d due to conformal invariance of the integrai in (6.3}, then the zeroth
order result 75 = —d — I implies that , = 2 to this order. Now, with the scaling relation
(A(x)) = Ap/4y? it is possible to obtain G4 as a solution to a differential equation.
Alternatively we can recast (6.2) into an integral equation so that the method of parallel
transforms can be used to obtain a solution. Writing

n’)ﬂé f)m

/ dr H(x,r)Gy(r, x"} = 8%(x — x) (6.5)
requires that

H(x,x) = ( v+ Z—z) 84 x —x7). (6.6)
The integral of H(x, x) over planes parallel to the boundary may be written as

1
[z By = ——ii0.3) ©.7)
(yy'y:

defining h to be

[l r d

R, e¥) = (_Eﬁ + 1+ A;,) 86 — 6. (6.8)

The subsequent Fourier transform of h(e®, e%'y gives the simple expression

) =2 +1+ 4. (6.9)

We may now solve for G4 by first integrating the integral equation (6.5) over planes parallel
to the boundary and then taking the Fourier ransform as defined in (3.10). The resulting
equation is

R Fy) =1 (6.10)

where },;(k) is the transform of the'function fo(&) defined in (6.4). Consequently the
destred result is

= I 1

Jolk) =< (6.11)
If we are now express f¢(lc) as

~“ r L — ik

P = 1 (+ i (p—gk) “2=1+A1 612)

16 T(1 + g+ HOT(L + g — Lik)
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then we may use the result (4.13) to obtain the inverse transform directly:

1 T+ 1 1 1
T TA T30 05 E)“‘“"F (w + A,E 2 1+ Ap T—i-_) . (63)
This general form for f3(€) gives the correct large-N Green function Gg(x, x') appropriate
for both the ordinary and special transitions in the statistical mechanical context where we
should take p = {d — 3)/4 and 1 = (d — 5)/4 respectively [14]. Solutions for G, (x, x")
can now be obtained in a similar way via the integral equation (6.3). Results for G; (x, x")
for both the Ordinary and Special transitions were calculated with the paralle]l transform
method in 7 and also in [10-12] by a different method. It would be interesting to see if
the next order in the 1/N expansion can be obtained using the methods discussed in this
paper; this is the subject of future research.
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Appendix. Hypergeometric function relations

In this appendix we derive some essential hypergeometric function relations that are needed
in section 4. ‘We start with the definition of the hypergeometric function

Fla.b;c;2) = Z i (@) {B)n

=nt (O

(A.1)

where (a), = ['(a +n)/T'(a) is the Pochhammer symbaol. There is a natural generalization
of this definition, which is called a generalized hypergeometric series

o0

Zn A1) - (@ply
PFq(a],"'ap;Cl,---Cq;Z)EZ_M

2 a o o (8.2

For application to section 4 we need to consider the inverse parallel transform of functions
of the following hypergeometric form:

E(sinh®8) = e~ Pl F, (24, b1, --by; €1, - - - gy €7H1) (A.3)

h(sinh?8) = e 1\ .1 F, (20, b1, - - - by ¢y, - cqr 6™ 2) (Ad)

where ¢; = I + 2a — b;. To take the inverse transform we express these results as the sum
indicated by (A.2) and then observe that, with p = sinh? ¢

. -2 1 1 1 ,
ezﬂ'ﬂ'ﬂ-(ﬁ+¢1+p) e — (p1—+p;1+2p;—) (A.5)

= F
4P(1 - p)F 2 1+p
where p = 2a + 2n for § and p = a +n for A. We can now obtain the inverse transform
by using

1 f® 1 T(p+1) 1
— d A=l — .
r@mﬁ PP U+eter T (18w

(A6)
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with the result

I'(p) e ( P i 1 )
Tornren b PP Taarpr \P3 O T
et p(ptriipiian -1—)
S hrpe PRI
I 1 1 A7
=§,H_—AF(P+A,~2-+P:1+2P;—E)
B E+1 (1 1 _ _ 1
) [su+e)]5‘f’+’~+”F(i("+“1)’”'2'“’“’“””""45(1+5))
(A.8)
——;—F(E( A, 2+ p =AY 1+ -——1-——) (AS)
T e 2 PTG TR Ty

The techniques for finding the inverse transform of g and f; are related, except that for A
it is necessary to use (A.7) while for § either of the equivalent results (A.8),(A.9) may be
used. Both of these equivalent results are helpful, because two different expressions for
g(€) can be derived from them and a nice simplification of these expressions occurs for
different values of the parameters b;. For the purpose of this discussion we will focus on
the inversion of § for which we use (A.9) with p = 2a 4 2n to obtain

&) = 1 T2a+d) o i 1 QaYulbrdn -~ (bgdn 2@ + M2
T BRI [ aptP gt @@ #00m
X;F(a+ll+n ~1—+a- lJL—I-W,'
[4ea+ 8T 272
1
2 L — :
14+2a+2n; 45(1"‘5)) (A10)
By expanding the hypergeometric function, g(£) can be rewritten as
1 I@2a+i) 1 & (-n¥
= . —_— A.ll
O E T parept i marer O
where the coefficient G is given by the finite sum
N
('_l)n (za)n(bl)rz e (bq)n
Gy = -
! ;(mm =Ml €n Cqhn
Qa4+ M@+ 32+ M- +a— A+ n)N_,,) A12)
4r(2a)2,(1 + 22+ 2n) y_p ‘ '

This can be simplified further by using the following identities for the Pochhammer symboi:

(PIn =n"
_4111 nl_'_l " n = _ = —. A,
(D)2 =47 (3P)u(5 + 3P) (p-+my o P a= o, (A.13)




Conformal field theories with a boundary 6929

s0 that Gy becomes

@+ 3Mn( a0y l [ |
O =N+ 20 assFy5s(22, 1+ @by, bg, § a1, =N
a,c, o 0 d+a— L 1+2a+ ;1) (A.14)

The finite ;4 F,3 finite hypergeometric series, with argument 1, has a special form because
¢ = 1+ 2a — b;. As a consequence, for the particular case g = 1, the resulting s Fs can be
summed exactly by a special limit of Dougall’s theorem which states that [15]

sFa(Za,14a. b,c,—N;a,1+2a—b,1+2a—c,142a+ N; 1)
_ (I+2a)y(14+2a-b—c)y

(14 2a-by(l+2z—c)y (A.13)
So for ¢ = I and applying Dougail’s theorem we find
1 I'Ca+i) 1
¢8) = P T e (6 + D
xa F) (a+1l,1—ll+a— b 14+2a—8; —;) . (A.16)
22 2 45(1+5)

This result and the inverse fourier transform (4.11) are sufficient for verifying the integral
transforms in (4.8) and (4.9).

Although a generalization of Dwougall’s theorem is not known for arbitrary g, the
coefficient Gy can usually be simplified to give a finite 5F,4 series through cancellation
of the parameters. However, for this cancellation to occur it may be necessary in some
cases to use an alternative formula for g(§) which may be derived from (A.8) following a
similar procedure. The result is

1 T'(a+A) 414 2 (=1

g(E) = . (A.17
#xt TQa) g1+ )] £ f"[4é(1 +E)1Y )
where
—  Gta+iy+a—iNy |
Gy = N+ 2a)y q+4Fq+3(2a,1+a,b1,---,bq,a+§}u, —N;
g i 1 +a— A 1+ 20+ N3 1), (A.18)

The calculation of £(£) proceeds in a similar way. Using (A.7) one gets

1 Ta+x) 1 & (DY
M) = T e A v (A.19)

where

o _ @G+
YT TN+ 2a),

q+3Fq+2(2a, 1+a, by, .-, by, —N;

a,c.,---,cq,1+2a+N;1). (A.20)
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Again we recall that ¢; = 1 4 2a — b;. For the case ¢ = | which is relevant for section 4
we use a theorem similar to Douogall’s:

(1+2a)n(; +a— b}y

F(e,1+a,b,—-N,a,14+2a-b,14+2a+N; 1) = A2l
s = Crana+zapy, &N
to obtain

_ 1 Pe+d) 1 1 _ 1
) = S T EMF( +hz+a=—bil+2a—b; E) : (A22)
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